Mejora en la calidad de imágenes ultrasónicas aplicando métodos de composición espacial y empleando sistemas de Phased Array

AUTOR(ES)
FONTE

Matéria (Rio J.)

DATA DE PUBLICAÇÃO

19/07/2018

RESUMO

ABSTRACT The Phased Array Ultrasonic Technique (PAUT) has become a widely used imaging tool for the Nondestructive Testing in the industrial field. The PAUT allows making deflections and focusing the ultrasound beam at different depths within the material, through an electronic control of each one of the N elements that make up the array transducer. Thus, several electronic sweeps can be performed to obtain images in different formats. The PAUT imaging is very efficient in detecting flaws whenever they have a favorable orientation relative to the beam direction. Therefore, it is necessary to establish the transducer position and set-up the scanning correctly. Nevertheless, there are some drawbacks such as quality and intensity losses in the data when the detection is made at high angles. For these reasons, it is necessary to perform exploration from different positions using different angular ranges to obtain information with spatial diversity. This work presents the spatial and coherent compounding of PAUT images, which have been captured with different orientations and in different positions related to the explored volume, to produce a single image. A generic algorithm was developed for performing a scanning conversion using the bilinear interpolation, which allows obtaining a high quality final image and more accuracy in the quantitative analysis of indications. The proposal has been validated on components and materials that can compose pieces of nuclear use.

Documentos Relacionados