Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis.

AUTOR(ES)
RESUMO

The typical biochemical paradigm for coupling between hydrolysis of ATP and the performance of chemical or mechanical work involves a well-defined sequence of events (a kinetic mechanism) with a fixed stoichiometry between the number of ATP molecules hydrolyzed and the turnover of the output reaction. Recent experiments show, however, that such a deterministic picture of coupling may not be adequate to explain observed behavior of molecular motor proteins in the presence of applied forces. Here we present a general model in which the binding of ATP and release of ADP serve to modulate the binding energy of a motor protein as it travels along a biopolymer backbone. The mechanism is loosely coupled--the average number of ATPs hydrolyzed to cause a single step from one binding site to the next depends strongly on the magnitude of an applied force and on the effective viscous drag force. The statistical mechanical perspective described here offers insight into how local anisotrophy along the "track" for a molecular motor, combined with an energy-releasing chemical reaction to provide a source of nonequilibrium fluctuations, can lead to macroscopic motion.

Documentos Relacionados