Mechanistic constraints on diversity in human V(D)J recombination.

AUTOR(ES)
RESUMO

We have analyzed a large collection of coding junctions generated in human cells. From this analysis, we infer the following about nucleotide processing at coding joints in human cells. First, the pattern of nucleotide loss from coding ends is influenced by the base composition of the coding end sequences. AT-rich sequences suffer greater loss than do GC-rich sequences. Second, inverted repeats can occur at ends that have undergone nucleolytic processing. Previously, inverted repeats (P nucleotides) have been noted only at coding ends that have not undergone nucleolytic processing, this observation being the basis for a model in which a hairpin intermediate is formed at the coding ends early in the reaction. Here, inverted repeats at processed coding ends were present at approximately twice the number of junctions as P nucleotide additions. Terminal deoxynucleotidyl transferase (TdT) is required for the appearance of the inverted repeats at processed ends (but not full-length coding ends), yet statistical analysis shows that it is virtually impossible for the inverted repeats to be polymerized by TdT. Third, TdT additions are not random. It has long been noted that TdT has a G utilization preference. In addition to the G preference, we find that TdT adds strings of purines or strings of pyrimidines at a highly significant frequency. This tendency suggests that nucleotide-stacking interactions affect TdT polymerization. All three of these features place constraints on the extent of junctional diversity in human V(D)J recombination.

Documentos Relacionados