Mechanisms underlying the differentiation of stem cells from human exfoliated deciduous teeth (SHED) into odontoblasts and endothelial cells / Mecanismos envolvidos na diferenciação de células-tronco de dentes decíduos exfoliados humanos (SHED) em odontoblastos e células endoteliais

AUTOR(ES)
DATA DE PUBLICAÇÃO

2009

RESUMO

Dental pulp tissue engineering aims to replace the inflamed or necrotic pulp by a healthy and functionally competent tissue able to form new dentin in order to repair lost structure. The purposes of this work were: to evaluate the differentiation ability of stem cells from human exfoliated deciduous teeth (SHED) into functional odontoblasts, showing the formation of mineralized tissue in vivo; and to study the effect of VEGF on SHED with regards to the stimulation of cell signaling pathways (STAT3, AKT and ERK), the proliferation, migration, capillary sprouting, and the differentiation into endothelial cells. The beginning of the mineralization process of SHED treated with dexamethasone, ascorbic acid and beta-glycerophosphate could be detected through the production of alkaline phosphatase after the second week of culture, but the expression of DSPP mRNA was only observed after 28 days of induction. Using the tooth slice and scaffold model implanted in the dorsum of immunocompromised mice, the differentiation of SHED into odontoblast-like cells, which were immunostained with DMP-1 antibody, was demonstrated. Dentin deposition following a centripetal rhythm, in a rate of 14.1 µm per day, was also shown through the tetracycline labeling. VEGF treatment of SHED stimulated the ERK and AKT phosphorilation, and decreased the phosphorilation of STAT3 over 1 hour period, presumably due to its binding to VEGFR-1 and NP-1 receptors in these cells. In addition, VEGF enhanced SHED organization into tubular structures, with statistically significant difference between the treated group and the non-treated one after the 5th day of treatment. However, VEGF did not stimulate proliferation and migration of these cells. RT-PCR results demonstrated that SHED seeded in the tooth slices and scaffolds expressed VEGFR-2 after the first day of VEGF stimulation. Moreover, the four endothelial cell markers (VEGFR-1, VEGFR-2, CD31 and VE-Cadherin) were observed after 21 days of VEGF stimulation, and this result was even clearer after 28 days. In vivo, SHED transduced with LacZ gene were able to give rise to blood vessel-like structures when implanted in immunocompromised mice, but the presence of blood flow was not observed after 21 days of implantation. Therefore, SHED can be stimulated to differentiate into functional odontoblasts, which in turn are able to produce mineralized structure resembling dentin. Furthermore, VEGF interferes with the STAT3, ERK and AKT signaling pathways, and stimulates the formation of tubular structures and the differentiation of SHED into endothelial cells, but does not stimulate SHEDs proliferation and migration. We believe that the same technology employed in this study or a similar one can eventually provide clinical tools for the endodontic treatments aiming at regenerating a complete pulp tissue and forming a dentin tissue in a near future.

ASSUNTO(S)

sinalização celular vasos sangüíneos blood vessels dentinogênese mineralization cell signaling dentinogenesis mineralização engenharia tecidual complexo dentino-pulpar tissue engineering endodontia dentin-pulp complex endodontics

Documentos Relacionados