Mechanism of additive genetic transformation in Haemophilus influenzae.

AUTOR(ES)
RESUMO

Transforming deoxyribonucleic acid (DNA) preparations from Haemophilus influenzae Rd strains carrying a chromosomally integrated, conjugative, antibiotic resistance transfer (R) plasmid were exposed to ultraviolet radiation and then assayed for antibiotic resistance transfer on sensitive wild-type Rd competent suspensions and on similar suspensions of a uvr-1 mutant unable to excise pyrimidine dimers. No host cell reactivation of resistance transfer (DNA repair) was observed. Parallel experiments with ethanol-precipitated, heated, free R plasmid DNA preparations gave much higher survival when assayed on the wild-type strain compared to the survival on the uvr-1 strain. These observations indicate that additive genetic transformation (in this case, the addition of the integrated R plasmid to the recipient genome) involves single-strand insertion.

Documentos Relacionados