Mechanical Properties of Human Fetal Talus

AUTOR(ES)
FONTE

Springer-Verlag

RESUMO

Mechanical characterization of human cartilage anlagen is required to effectively model congenital musculoskeletal deformities. Such modeling can effectively explore the effect of treatment procedures and potentially suggest enhanced treatment methods. Using serial MRI, we have noted shape changes of the cartilaginous hindfoot anlagen in patients with clubfoot, suggesting they are soft and deformable. We therefore determined the stress relaxation behavior of cartilage plugs obtained from third-trimester stillborn fetuses in unconfined and confined compression geometries. The material parameters determined were the aggregate modulus HA = 0.15 ± 0.07 MPa, Poisson’s ratio ν = 0.4 ± 0.06, Young’s modulus Es = 0.06 ± 0.03 MPa, and permeability coefficients k0 = 2.01 ± 0.8 × 10−14 m4 N−1 s−1 and M = 4.6 ± 1.0. As compared with adult articular cartilage, stiffness was an order of magnitude lower than the values reported in the literature, suggesting the relative softness of the tissue, and the permeability was an order of magnitude higher, indicating relative ease of flow in the tissue. Poisson’s ratio also was close to the higher end of the range reported in previous studies. Such material is expected to deform and relax to larger extents. These findings are consistent with the deformability of the cartilage anlagen during manipulation and casting for treatment of clubfoot.

Documentos Relacionados