Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1

AUTOR(ES)
FONTE

The National Academy of Sciences

RESUMO

The tumor suppressor p53 is a labile protein whose level is known to be regulated by the Mdm-2–ubiquitin–proteasome degradation pathway. We have found another pathway for p53 proteasomal degradation regulated by NAD(P)H quinone oxidoreductase 1 (NQO1). Inhibition of NQO1 activity by dicoumarol induces p53 and p73 proteasomal degradation. A mutant p53 (p53[22,23]), which is resistant to Mdm-2-mediated degradation, was susceptible to dicoumarol-induced degradation. This finding indicates that the NQO1-regulated proteasomal p53 degradation is Mdm-2-independent. The tumor suppressor p14ARF and the viral oncogenes SV40 LT and adenovirus E1A that are known to stabilize p53 inhibited dicoumarol-induced p53 degradation. Unlike Mdm-2-mediated degradation, the NQO1-regulated p53 degradation pathway was not associated with accumulation of ubiquitin-conjugated p53. In vitro studies indicate that dicoumarol-induced p53 degradation was ubiquitin-independent and ATP-dependent. Inhibition of NQO1 activity in cells with a temperature-sensitive E1 ubiquitin-activating enzyme induced p53 degradation and inhibited apoptosis at the restrictive temperature without ubiquitination. Mdm-2 failed to induce p53 degradation under these conditions. Our results establish a Mdm-2- and ubiquitin-independent mechanism for proteasomal degradation of p53 that is regulated by NQO1. The lack of NQO1 activity that stabilizes a tumor suppressor such as p53 can explain why humans carrying a polymorphic inactive NQO1 are more susceptible to tumor development.

Documentos Relacionados