Marked replicative advantage of human mtDNA carrying a point mutation that causes the MELAS encephalomyopathy.

AUTOR(ES)
RESUMO

The segregation of mutant and wild-type mtDNA was investigated in transformants constructed by transferring human mitochondria from individuals belonging to four pedigrees with the MELAS encephalomyopathy-associated mtDNA mutation (MELAS is mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes) into human mtDNA-less (rho 0) cells. Five of 13 clonal cell lines containing mixtures of wild-type and mutant mtDNAs were found to undergo a rapid shift of their genotype toward the pure mutant type. The other 8 cell lines, which included 6 exhibiting nearly homoplasmic mutant mtDNA, on the contrary, maintained a stable genotype. Subcloning experiments and growth rate measurements clearly indicated that an intracellular replicative advantage of mutant mtDNA was mainly responsible for the dramatic shift toward the mutant genotype observed in the unstable cell lines.

Documentos Relacionados