Mannitol Protects against Oxidation by Hydroxyl Radicals.

AUTOR(ES)
RESUMO

Hydroxyl radicals may be responsible for oxidative damage during drought or chilling stress. We have shown that the presence of mannitol in chloroplasts can protect plants against oxidative damage by hydroxyl radicals (B. Shen, R.G. Jensen, H.J. Bohnert [1997] Plant Physiol 113: 1177-1183). Here we identify one of the target enzymes that may be protected by mannitol. Isolated thylakoids in the presence of physiological concentrations of Fe2+ generated hydroxyl radicals that were detected by the conversion of phenylalanine into tyrosine. The activity of phosphoribulokinase (PRK), a thiol-regulated enzyme of the Calvin cycle, was reduced by 65% in illuminated thylakoids producing hydroxyl radicals. Mannitol (125 mM) and sodium formate (15 mM), both hydroxyl radical scavengers, and catalase (3000 units mL-1) prevented loss of PRK activity. In contrast, superoxide dismutase (300 units mL-1) and glycine betaine (125 mM) were not effective in protecting PRK against oxidative inactivation. Ribulose-1,5-bisphosphate carboxylase/oxygenase activity was not affected by hydroxyl radicals. We suggest that the stress-protective role of mannitol may be to shield susceptible thiol-regulated enzymes like PRK plus thioredoxin, ferredoxin, and glutathione from inactivation by hydroxyl radicals in plants.

Documentos Relacionados