Magnetoresistencia em metais e ligas ferromagneticas

AUTOR(ES)
DATA DE PUBLICAÇÃO

1979

RESUMO

A study of the galvanomagnetic properties of crystalline and amorphous ferromagnetic metals is presented. A simple two-band model is used in order to explain experimental results of the Hall resistivity of iron at very high magnetic fields, taking into account spin dependent scattering effects and magnetic breakdown. Spherical Fermi surfaces are considered as well as different effective masses for electron and hole-like carriers. It is also studied the magnetoresistance of amorphous ferromagnetic metals for alloy systems TxAu1-x where T is a transition metal. It is suggested that conduction electrons of the alloy system are scattered by fluctuations of the localized magnetic moments associated to the transition metal atoms, thus yielding a negative magnetoresistance up to fields of the order of 50 kG, and producing a T2 behavior of the resistivity for intermediate temperatures below the Curie point. The calculations presented here are in good agreement with the experimental results

ASSUNTO(S)

efeitos galvanomagneticos metais magnetoresistencia ligas (metalurgia)

Documentos Relacionados