Light-Harvesting Chlorophyll a/b Complexes: Interdependent Pigment Synthesis and Protein Assembly.

AUTOR(ES)
RESUMO

The biogenetic interdependence of light-harvesting chlorophyll (Chl) a/b proteins (LHCPs) and antenna pigments has been analyzed for two nuclear mutants of Chlamydomonas that have low levels of Chl b, neoxanthin, and loroxanthin. In mutant PA2.1, the apoprotein precursors (pLHCP II) of the major light-harvesting complex LHC II were synthesized at approximately wild-type rates, processed to their mature size, and rapidly degraded. Because the bulk of labile LHCP II in PA2.1 was soluble, a thylakoid integration factor apparently is defective in this strain. Chl a, Chl b, neoxanthin, and loroxanthin synthesis and accumulation were coordinately reduced in PA2.1, indicating that LHCP II play important regulatory or substrate roles in de novo synthesis of these pigments. Mutant GE2.27 is impaired principally in Chl b synthesis but nonetheless accumulated wild-type levels of all LHCPs. Topology studies of the GE2.27 LHCP II demonstrated that their insertion into thylakoids was incomplete even though they were not structurally altered. Thus, Chl b formation mediates conformational changes of LHCP II after thylakoid integration is initiated. GE2.27 also exhibited very low rates of neoxanthin synthesis and was unable to accumulate loroxanthin. Revertant GE2.27 strains with varying capacities for Chl b formation provided additional evidence that neoxanthin synthesis and accumulation are coupled with the final steps of LHCP II integration into thylakoids. We propose that biogenesis of LHC includes interdependent pigment synthesis/assembly events that occur during LHCP integration into the thylakoid membrane and that defects in these events account for the pleiotropic characteristics of many Chl b-deficient mutants.

Documentos Relacionados