Laboratory Study of Chemical Speciation of Mercury in Lake Sediment and Water under Aerobic and Anaerobic Conditions

AUTOR(ES)
RESUMO

Chemical speciation and partitioning of radiolabeled HgCl2 were studied in model aquatic systems consisting of undisturbed eutrophic lake sediment and water in plastic cylinders. The cylinders were either gradually made anaerobic by a gentle flow of N2-CO2 or kept aerobic by air flow. The proportion of methylated 203Hg was significantly higher, in both water and sediment, in the anaerobic systems than in the aerobic systems. The composition and total concentration of fatty acids originating from bacterial phospholipids, as well as the concentration of vitamin B12, including related cobalamins, were similar in sediments from the anaerobic and aerobic systems. Bacterial cell numbers were, on average, 3.6 times higher in the anaerobic water columns than in the aerobic ones. Volatilization of 203Hg occurred in all systems except in an autoclaved control and was of similar magnitudes in the anaerobic and aerobic systems. Incorporation of 203Hg into the sediment was significantly faster in the aerobic systems than in the anaerobic systems. These results suggest that episodes of anoxia in bottom waters and sediment cause an increase in net mercury methylation and, hence, an increase in bioavailable mercury.

Documentos Relacionados