Kinetics and locus of failure of receptor-ligand-mediated adhesion between latex spheres. II. Protein-protein bond.

AUTOR(ES)
RESUMO

In an extension of the previous paper, we describe the force dependence of break-up of doublets of latex spheres cross-linked by protein G-IgG bonds via the Fc region of the antibody. The receptor, the monoclonal Bear-1 antibody, was either covalently linked to 4.75-microns aldehyde/sulfate (A/S) latex spheres in a one-step reaction, or physically adsorbed to the 4.63-microns carboxyl-modified latex spheres used in Part I of this paper. The spheres were suspended in 19% buffered Dextran 40 containing the ligand, the bivalent recombinant protein G (Gamma-Bind G), and observed in the counter-rotating cone and plate Rheoscope. Break-up of doublets, tracked individually under the microscope, as well as in populations of 50-150 particles, was studied over a range of normal force from 20 to 260 pN. In individual particle studies, the fraction of doublets of spheres with covalently linked IgG breaking up in the first 10 rotations, increased from 16% in the low-force to 63% in the high-force range. In population studies, the fraction broken up increased with duration and magnitude of the applied force, and decreased with increasing ligand concentration. Moreover, doublets of physically adsorbed IgG spheres required significantly lower force than doublets of covalently linked IgG spheres for the same degree of break-up, possibly because of surface detachment of IgG molecules rather than rupture of receptor-ligand bonds. Computer simulation, using the Bell stochastic model of break-up and a Poisson distribution for the number of bonds, described in Part I, showed that the parameters of the protein-protein bond differed significantly from those of the carbohydrate-protein bond studied in Part I of this paper, the former being much more responsive to force than the latter.

Documentos Relacionados