Isolation of a glycogen synthase I kinase that is independent of adenosine 3':5'-monophosphate.

AUTOR(ES)
RESUMO

Three protein kinases (ATP:protein phosphotransferase, EC 2.7.1.37) were detected when the soluble fraction of rabbit kidney medulla was chromatographed on DEAE-cellulose with a linear NaC1 gradient. The first two kinases eluted (Peak 1 and Peak II) were cyclic-AMP-dependent, wheras Peak III was cyclic-AMP-independent. A procedure was developed to separate the catalytic subunit of Peak II cyclic-AMP-dependent protein kinase (representing the bulk of the histone kinase activity) from Peak III protein kinase. In contrast to the catalytic subunit, Peak III protein kinase phosphorylated casein more rapidly than histone. Peak III was insensitive to the heat-stable protein inhibitor of cyclic-AMP-dependent protein kinases and appeared to have a higher requirement for ATP than did the catalytic subunit. Peak III catalyzed the conversion of glycogen synthase (UDPglucose:glycogen alpha-4-glucosyltransferase, EC 2.4.1.11) from the I (glucose-6-phosphate-independent) to the D (glucose-6-phosphate-dependent) form. This conversion was dependent on Mg-2+ and ATP and was unaffected by cyclic AMP, cyclic GMP, or the protein inhibitor. Glycogen synthase I in the soluble fraction of kidney medulla could be converted to the D form by endogenous glycogen synthase I kinase if Mg-2+ and ATP were added. Most of this glycogen synthase I kinase activity was unaffected by cyclic AMP or by the protein inhibitor, suggesting that Peak III may be of major importance in the regulation of glycogen synthase in vivo.

Documentos Relacionados