Isolation and genetic characterization of ethanol-resistant reovirus mutants.

AUTOR(ES)
RESUMO

To better understand the mechanism(s) by which viruses respond to chemical or physical treatments, we isolated a series of mutant strains of reovirus type 3 Dearing that exhibit increased ethanol resistance. Following exposure to 33% ethanol for 20 min, the parental strain exhibited a 5 log10 decrease in infectivity. The mutant strains, however, exhibited a 2 to 3 log10 decrease in titer following identical treatment. Through the use of reassortant viruses, we mapped this increased ethanol resistance mutation to the M2 gene segment, which encodes a major outer capsid protein, mu1C. Sequence analysis of mutant M2 genes revealed that six of seven unique mutants possessed single-point mutations in this gene. In addition, the change in six of seven mutants caused a predicted amino acid change in a 35-amino-acid region of the gene product between amino acids 425 and 459. The identification of ethanol resistance mutations within a discrete region of this outer capsid protein identifies that portion of the protein as important in reovirus stability. The presence of viral particles possessing altered stability also suggests that subpopulations of viruses may possess altered environmental stability, which, in turn, could affect viral transmission.

Documentos Relacionados