Isolation and characterization of human placental trophoblast subpopulations from first-trimester chorionic villi.

AUTOR(ES)
RESUMO

A method for the simultaneous preparation of highly enriched human placental trophoblast populations (villous and extravillous) from first-trimester placental villi (5 to 12 weeks) by using sequential trypsinization, percoll gradient centrifugation, and negative selection with anti-CD9 immunomagnetic separation is described. The purification method resulted in the isolation of four distinct trophoblast populations identified on the basis of morphology and phenotyping: (i) mononuclear villous cytotrophoblast cells which, through differentiation, become committed to syncytium formation; (ii) an extravillous trophoblast population which appeared as a "crazy pavement" and, with subsequent subculturing, differentiated morphologically to mononuclear cells; (iii) an extravillous trophoblast fraction which fused to form multinucleated trophoblast giant cells; and (iv) floating intermediate extravillous trophoblast cells which fused together to form cell clumps and which further differentiated to a mononuclear anchoring intermediate extravillous trophoblast. Short-term cultures of the freshly isolated cell fractions consisted of heterogeneous trophoblasts at different differentiation stages as determined by their varied biochemical and morphological properties. All the isolated trophoblast populations expressed the cytokeratin intermediate filament and the epithelium-specific cell-cell adhesion molecule E-cadherin. The isolated villous trophoblasts in culture expressed integrins alpha 6 and beta 4 and reduced levels of beta 1 subunits, whereas the proliferating extravillous trophoblast cultures expressed alpha 1, alpha 3, and alpha 5 and high levels of beta 1 integrin subunits, vitronectin receptor (alpha V beta 3/beta 5), and major histocompatibility complex class 1 molecules. Furthermore, the isolated trophoblast populations secreted metalloproteases (such as type IV collagenases [mainly 72- and 92-kDa enzymes, i.e., gelatinases A and B]) and urokinase plasminogen activator, as evaluated by substrate gel zymography. This method of isolation should facilitate in vitro studies of trophoblast proliferation, differentiation, invasion, virus interactions, cytokenesis, and immunology.

Documentos Relacionados