Isolation and characterization of an extragenic suppressor of the low-density lipoprotein receptor-deficient phenotype of a Chinese hamster ovary cell mutant.

AUTOR(ES)
RESUMO

ldlC cells are low-density lipoprotein (LDL) receptor-deficient Chinese hamster ovary cell mutants which express pleiotropic defects in Golgi-associated glycosylation reactions. The dramatically reduced stability of the abnormally glycosylated LDL receptors in ldlC cells was shown to be due, in part, to rapid proteolysis and release of a large extracellular fragment of the receptor into the medium. A set of spontaneously arising LDL receptor-positive revertants of ldlC cells has been isolated. One of these, RevC-13, exhibits the glycosylation defects characteristic of the original ldlC mutant, suggesting that restoration of receptor activity was due to extragenic suppression. This suppression was due to a dramatic increase in the rate of LDL receptor synthesis rather than to an increase in the stability of the abnormally glycosylated receptors. Increased receptor synthesis was not due to receptor gene amplification. The increased LDL receptor activity was subject to normal sterol regulation. Analysis of the RevC-13 extragenic suppressor activity in a series of hybrid cells showed that RevC-13 suppression was a codominant trait that acted in cis to the LDL receptor structural gene (ldlA). Thus, the extragenic suppression in RevC-13 cells has defined a genetic element which is either part of or linked to the LDL receptor structural gene and which can control LDL receptor expression.

Documentos Relacionados