Involvement of Aminopeptidase N (CD13) in Infection of Human Neural Cells by Human Coronavirus 229E

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

Attachment to a cell surface receptor can be a major determinant of virus tropism. Previous studies have shown that human respiratory coronavirus HCV-229E uses human aminopeptidase N (hAPN [CD13]) as its cellular receptor for infection of lung fibroblasts. Although human coronaviruses are recognized respiratory pathogens, occasional reports have suggested their possible neurotropism. We have previously shown that human neural cells, including glial cells in primary cultures, are susceptible to human coronavirus infection in vitro (A. Bonavia, N. Arbour, V. W. Yong, and P. J. Talbot, J. Virol. 71:800–806, 1997). However, the only reported expression of hAPN in the nervous system is at the level of nerve synapses. Therefore, we asked whether hAPN is utilized as a cellular receptor for infection of these human neural cell lines. Using flow cytometry, we were able to show the expression of hAPN on the surfaces of various human neuronal and glial cell lines that are susceptible to HCV-229E infection. An hAPN-specific monoclonal antibody (WM15), but not control antibody, inhibited the attachment of radiolabeled HCV-229E to astrocytic, neuronal, and oligodendrocytic cell lines. A correlation between the apparent amount of cell surface hAPN and the level of virus attachment was observed. Furthermore, the presence of WM15 inhibited virus infection of these cell lines, as detected by indirect immunofluorescence. These results indicate that hAPN (CD13) is expressed on neuronal and glial cell lines in vitro and serves as the receptor for infection by HCV-229E. This further strengthens the neurotropic potential of this human respiratory virus.

Documentos Relacionados