INVESTIGAÇÃO NUMÉRICA DO ESCOAMENTO DENTRO E ACIMA DO DOSSEL DE FLORESTAS / NUMERICAL INVESTIGATION OF FLOW WITHIN AND ABOVE FOREST CANOPY

AUTOR(ES)
DATA DE PUBLICAÇÃO

2007

RESUMO

This work investigates different procedures in order to study the turbulent flow over the scale model of a forest region. Initially, the canopy flow was modeled by using source terms in the momentum, turbulent kinetic energy and its dissipation rate equations. After that, the forest canopy was considered a homogeneous porous medium. In the last step, the canopy boundary layer was modeled by artificial 3-D tree models. This was done by using the standard k¿E turbulence model with the FLUENT commercial program. The modeled profiles of mean velocity, turbulence intensity and Reynolds stress were compared against data from wind tunnel experiments. In the two first methodologies, the model predictions of the vertical profiles of the wind speed and turbulence intensity showed good agreement with the experimental data. It was found that predictions of the Reynolds tensor were sensitive to the parameterization scheme of the standard k ¿E model. However, qualitatively, the model was capable of predicting the physical behavior of the Reynolds stress tensor in the canopy flow. A possible explanation for this behavior is the omission of any anisotropic eddy-viscosity effects within the k - E modelling approach. When it was considered the tree array, the model predictions for the wind speed and turbulence intensity were less satisfactory. However, it was found that the predicted results of the Reynolds stress tensor agreed well with the measured data. All the vertical profiles of the mean velocity contained an inflection point, something which is a necessary criterion for the mixing layer flow. In the tree array, the modeled results failed to the capture this behavior of the canopy flow. In the 2-D numerical simulations, it was found the characteristic hyperbolic tangent profile of a mixing layer.

ASSUNTO(S)

escoamento sobre dosseis modelo de turbulencia canopy flow turbulence model mixing layer source terms camada de mistura termos fontes

Documentos Relacionados