Investigação experimental e analítica do escoamento ao redor de cilindro circular com supressores de VIV. / Experimental and analytical investigation of the flow around circular cylinder with VIV suppressors.


IBICT - Instituto Brasileiro de Informação em Ciência e Tecnologia




The fluid flow around bluff bodies is one of the main problems in fluid mechanics. The investigations of this phenomenon are based on analytical, numerical and experimental techniques. Each technique presents advantages and disadvantages, being impossible the comprehensive characterization of the flow though only one technique for the majority of body geometries and flow conditions. Within this context, the present thesis is proposed, which comprehends a fundamental study about the vortex shedding dynamics based on experimental techniques. Firstly, a hydrodynamic stability study of the flow around a circular cylinder is performed using the Ginzburg-Landau model. The experimental results of this study allowed the validation of numerical simulations and the main experimental technique employed was the Particle Image Velocimetry (PIV). The Fourier series decomposition of velocity fields permits to verify the hierarch suggested by the asymptotic solution of the Hopf bifurcation. Additionally, the results also indicate when the three-dimensionalities become important in the flow. The flow three-dimensionality is closely associated to the vortex-induced vibration (VIV) phenomenon, which exerts damaging effects on a great quantity of structures subjected to fluid flows. In order to suppress VIV, it was realized a parametric investigation of the helical strakes, that are commonly employed in the offshore industry. One verifies that the strakes modify the three-dimensional characteristics of the cylinder wake. Despite of the strake efficiency regarding the VIV suppression, the strakes have some limitations that are inherent to the flow hydrodynamic features. Consequently, it is presented a technique that reduces the three-dimensionalities in order to create a two-dimensional flow, with the possibility of closed-loop active control. The moving surface boundary-layer control (MSBC) suppresses VIV and reduces the drag delaying the cylinder boundary-layer separation through the injection of angular momentum by the rotational control cylinders.


escoamento ao redor de cilindro circular estabilidade hidrodinâmica flow around circular cylinder hydrodynamic stability piv piv supressor de viv vibração induzida por vórtices viv suppressor vortex-induced vibration

Documentos Relacionados