Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species.

AUTOR(ES)
RESUMO

Structural alterations of the chloroplast genome tend to occur at "hot spots" on the physical map. To clarify the mechanism of mutation of chloroplast genome structure in higher plants, we determined the nucleotide sequence of the hot-spot region of chloroplast DNAs related to length mutations (deletions/insertions) in Triticum (wheat) and Aegilops. From a comparison of this region in wheat with the corresponding region of tobacco or liverwort, it is evident that one of the open reading frames in tobacco (ORF512) has been replaced in wheat by the rpl23 gene, which is a member of the ribosomal protein gene operon. In the deleted positions and in the original genome of Triticum and Aegilops, consensus sequences forming short direct repeats were found, indicating that these deletions were a result of intramolecular recombination mediated by these short direct-repeat sequences. By two independent recombination events in the Aegilops crassa type of chloroplast genome, which is shared by Triticum monococcum, Ae. bicornis, Ae. sharonensis, Ae. comosa, and Ae. mutica, the novel chloroplast DNA sequences of T. aestivum and Ae. squarrosa were generated. This finding indicates the existence of illegitimate recombination in the chloroplast genome and presents a mechanism for producing genetic diversity of that genome.

Documentos Relacionados