Intracellular free magnesium in neurones of Helix aspersa measured with ion-selective micro-electrodes.

AUTOR(ES)
RESUMO

Cytoplasmic free Mg2+ concentration, [Mg2+]i, was measured in identified neuronal cell bodies of the suboesophageal ganglia of Helix aspersa, using Mg2+-selective micro-electrodes. In calibration solutions, the electrodes showed significant interference from K+, but not from Na+, or Ca2+, at concentrations found intracellularly. Therefore, in order to calibrate the electrodes properly, it was necessary first to obtain an accurate value for intracellular free K+ concentration [( K+]i). The mean value for [K+]i was 91 mM (S.E. of the mean +/- 2.2 mM, n = 8), measured with K+-sensitive 'liquid ion exchanger micro-electrodes'. In seven experiments, which met stringent criteria for satisfactory impalement and electrode calibration, the mean [Mg2+]i was 0.66 mM (S.E. of the mean +/- 0.05 mM). The mean [Mg2+]i in cells that had spontaneous spike activity was not significantly different from that in quiescent cells. If Mg2+ was in electrochemical equilibrium, the ratio [Mg2+]i/[Mg2+]o would be about 55. Mg2+ is therefore not passively distributed across the neuronal membrane and an outwardly directed extrusion mechanism must exist to keep [Mg2+]i low and constant, even in cells undergoing spike activity.

Documentos Relacionados