Interactions of the GM2 Activator Protein with Phosphatidylcholine Bilayers: A Site-Directed Spin-Labeling Power Saturation Study

AUTOR(ES)
FONTE

The Biophysical Society

RESUMO

The GM2 activator protein (GM2AP) is an accessory protein that is an essential component in the catabolism of the ganglioside GM2. A function of GM2AP is to bind and extract GM2 from intralysosomal vesicles, forming a soluble protein-lipid complex, which interacts with the hydrolase Hexosaminidase A, the enzyme that cleaves the terminal sugar group of GM2. Here, we used site-directed spin labeling with power saturation electron paramagnetic resonance to determine the surface-bound orientation of GM2AP upon phosphatidylcholine vesicles. Because GM2AP extracts lipid ligands from the vesicle and is undergoing exchange on and off the vesicle surface, we utilized a nickel-chelating lipid to localize the paramagnetic metal collider to the lipid bilayer-aqueous interface. Spin-labeled sites that collide with the lipid-bound metal relaxing agent provide a means for mapping sites of the protein that interact with the lipid bilayer interface. Results show that GM2AP binds to lipid bilayers such that the residues lining the lipid-binding cavity lie on the vesicle surface. This orientation creates a favorable microenvironment that can allow for the lipid tails to flip out of the bilayer directly into the hydrophobic pocket of GM2AP.

Documentos Relacionados