Inhibition of Photosynthetic Electron Transport in Isolated Spinach Chloroplasts by Two 1,3,4-Thiadiazolyl Derivatives 1

AUTOR(ES)
RESUMO

Buthidazole (3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone) and tebuthiuron (N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimethylurea) are two new promising herbicides for selective weed control in corn (Zea mays L.) and sugarcane (Saccharum officinarum L.), respectively. The effects of these two compounds on various photochemical reactions of isolated spinach (Spinacia oleracea L.) chloroplasts were studied at concentrations of 0, 0.05, 0.5, 5, and 500 micromolar. Buthidazole and tebuthiuron at concentrations higher than 0.5 micromolar inhibited uncoupled electron transport from water to ferricyanide or to methyl viologen very strongly. Photosystem II-mediated transfer of electrons from water to oxidized diamonodurene, with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) blocking photosystem I, was inhibited 34 and 37% by buthidazole and tebuthiuron, respectively, at 0.05 micromolar. Inhibition of photosystem I-mediated transfer of electrons from diaminodurene to methyl viologen with 3,4-dichlorophenyl-1,1-dimethylurea (DCMU) blocking photosystem II was insignificant with either herbicide at all concentrations tested. Transfer of electrons from catechol to methyl viologen in hydroxylamine-washed chloroplasts was inhibited 50 and 47% by buthidazole and tebuthiuron, respectively, at 0.5 micromolar. The data indicate that the inhibition of electron transport by both herbicides is primarily at the reducing side of photosystem II. However, since catechol is an electron donor at the oxidizing side of photosystem II, between water and chlorophyll a680, and lower inhibition levels were observed in the last study (catechol to methyl viologen), it may be that there is also a small inhibition of the mechanism of water oxidation by both herbicides.

Documentos Relacionados