Inhibition of p53 DNA binding by human papillomavirus E6 proteins.

AUTOR(ES)
RESUMO

Transformation by the human papillomavirus (HPV) early gene products, E6 and E7, involves their interaction with cellular proteins p53 and Rb. Using glutathione S-transferase (GST) fusion proteins, we found that HPV E6 bound human p53 and that the relative efficiency of binding varied such that the GST-HPV type 16 E6 (16E6) protein bound p53 with highest affinity, followed by GST-31E6, GST-18E6, and GST-11E6. The GST-E6 fusion proteins were sufficient for binding p53 purified from a baculovirus expression system as well as in vitro translation sources, while no association was observed with GST-18E7 or a GST-16E6 mutant bearing a five-amino-acid deletion in E6. When the site-specific DNA binding activity of p53 was examined in the presence of GST-E6 proteins, an inhibition of DNA binding was observed. The degree of inhibition correlated with the relative affinity of different E6 proteins for p53; thus, GST-16E6 was the most potent inhibitor of p53 DNA binding activity, and GST-11E6 was the least effective. Prevention of p53 DNA binding is likely to play a role in the abrogation of the transcriptional activity of p53 by HPV E6 and provides a further mechanism for E6 disruption of p53 growth suppressor function in addition to its role in directing specific degradation of p53 through the ubiquitin-mediated pathway. The variation in inhibition of DNA binding seen with the various E6 proteins may thus contribute to the differences in oncogenic potential seen among the HPV types.

Documentos Relacionados