Inhibition of growth by erythritol catabolism in Brucella abortus.

AUTOR(ES)
RESUMO

The growth of Brucella abortus (US-19) in a complex tryptose-yeast extract medium containing D-glucose is inhibited by 10 mM erythritol. The enzymes of the erythritol pathway, except for D-erythrulose 1-phosphate dehydrogenase (D-glycero-2-tetrulose 1-phosphate:nicotinamide adenine dinucleotide (NAD+) 4-oxidoreductase) were detected in the soluble and membrane fractions of cell extracts. Glucose catabolism by cell extracts was inhibited by erythritol, whereas, phosphorylated intermediates of the hexose monophosphate pathway were converted to pyruvic acid with oxygen consumption. Erythritol kinase (EC 2.7.1.27; adenosine 5'-triphosphate (ATP): erythritol 1-phosphotransferase) was found to be eightfold higher in activity than the hexokinase in cell extracts. In vivo, ATP is apparently consumed with the accumulation of D-erythrulose 1-phosphate (D-glycero-2-tetrulose 1-phosphate) and no substrate level phosphorylation. ATP levels dropped 10-fold in 30 min after addition of erythritol to log phase cells in tryptose-yeast extract medium with D-glucose as the carbon source. These data suggest bacteriostasis in the presence of erythritol results from the ATP drain caused by erythritol kinase.

Documentos Relacionados