Influence of Calcium and Magnesium on Ethylene Production by Apple Tissue Slices

AUTOR(ES)
RESUMO

The decline in ethylene production in apple (Pyrus malus L. cv. Golden Delicious) tissue slices during 24 hours incubation in 600 millimolar sorbitol and 10 millimolar 2-(N-morpholino)ethanesulfonic acid buffer (pH 6.0) is recognized as a senescent phenomenon. The inclusion of very high concentrations (100 millimolar) of Ca2+, Mg2+, or Ca2+ plus Mg2+ severely inhibited ethylene production during the first 6 hours of incubation. However, after 6 hours and up to 24 hours the ethylene-forming system was stablized. These high concentrations of Ca2+, Mg2+, or Ca2+ plus Mg2+ virtually eliminated lipid peroxidation and protein leakage from these slices. Also conversion of 1-aminocyclopropane-1-carboxylic-1-acid to ethylene and the influence of indoleacetic acid on ethylene production was stabilized after 24 hours of incubation by these high concentrations of Ca2+, Mg2+, and Ca2+ plus Mg2+. Addition of divalent ionophores severely inhibited ethylene production, but this inhibition was prevented by Ca2+ in concentrations greater than the ionophore. These data suggest that the loss of ethylene production by aging tissue slices results from degradation of membranes. They support previous work that indicates that the ethylene-forming system, perhaps the segment of the pathway from 1-aminocyclo-propane-1-carboxylic-1-acid to ethylene, resides in the plasma membrane.

Documentos Relacionados