Induction Specificity and Catabolite Repression of the Early Enzymes in Camphor Degradation by Pseudomonas putida

AUTOR(ES)
RESUMO

The ability of bornane and substituted bornanes to induce the early enzymes for d(+)-camphor degradation and control of these enzymes by catabolite repression were studied in a strain of a Pseudomonas putida. Bornane and 20 substituted bornane compounds showed induction. Of these 21 compounds, bornane and 8 of the substituted bornanes provided induction without supporting growth. Oxygen, but not nitrogen, enhanced the inductive potency of the unsubstituted bornane ring. All bornanedione isomers caused induction, and those with substituents on each of the three consecutive carbon atoms, including the methyl group at the bridgehead carbon, showed induction without supporting growth. Although it was not possible to obtain experimental data for a case of absolute gratuitous induction by compounds not supporting growth, indirect evidence in support of gratuitous induction is presented. It is proposed that the ability of P. putida to tolerate the unusually high degree of possible gratuitous induction observed for camphor catabolism may be related to the infrequent occurrence of bicyclic ring structures in nature. Survival of an organism with a broad specificity for gratuitous induction is discussed. Glucose and succinate, but not glutamate, produced catabolite repression of the early camphor-degrading enzymes. Pathway enzymes differ in their degree of sensitivity to succinate-provoked catabolite repression. The ability of a compound to produce catabolite repression is not, however, directly related to the duration of the lag period (diauxic lag) between growth on camphor and growth on the repressing compound.

Documentos Relacionados