Increased accessibility of bases in DNA upon binding of acridine orange.

AUTOR(ES)
RESUMO

Acridine orange (AO) forms 1:1 complexes with dsDNA which are insoluble in aqueous media, exhibit red luminescence, have minimal green luminescence and resemble complexes of AO with ss nucleic acids. During formation and/or dissociation of these complexes, accessibility of DNA bases to two conformational probes, formaldehyde and diethyl pyrocarbonate is increased, suggesting that the base pairing is destroyed and DNA at least partially denatured. Adriamycin and Ellipticine, but not Ethidium Bromide exert similar destabilizing effects. The results confirm our earlier predictions based on thermodynamic calculations that the double helix undergoes destabilization upon binding an intercalator characterized by high cooperativity in interaction with ss nucleic acids. Thus, the highly cooperative ligand binding to ss sections during the "breathing" of the polymer may progressively destabilize the adjacent ds structure.

Documentos Relacionados