Increase in T-type calcium current in atrial myocytes from adult rats with growth hormone-secreting tumors.

AUTOR(ES)
RESUMO

Growth hormone (GH) has pronounced effects on protein synthesis and cell growth in cardiac muscle from adult animals, although the mechanism of its action is not understood. Because Ca2+ has been implicated as a regulator of mitogenic processes in a number of tissues, we investigated whether GH affects the transmembrane movement of Ca2+ through voltage-activated channels of cardiac myocytes. Atrial and ventricular myocytes were isolated from adult rats with GH-secreting tumors and studied electrophysiologically by using patch-clamp techniques. Tumor-bearing rats re-enter an active growth phase and double their body weight over age-matched controls 8 weeks after introduction of the tumor. Atrial myocytes from tumor-bearing animals showed a 3-fold increase in the density of T-type Ca2+ current compared with cells from control animals, although the voltage dependency of activation and inactivation of T-type current was not altered. The increase in T-current density of atrial myocytes preceded by at least a week any measurable change in heart weight, body weight, or myocyte size. L-type Ca2+ currents in atrial and ventricular cells were not affected. The results suggest that a tumor-derived growth factor, most likely GH, can cause a specific enhancement of T-type Ca2+ current in atrial myocytes.

Documentos Relacionados