Inactivation of Lipid-Containing Viruses by Long-Chain Alcohols

AUTOR(ES)
RESUMO

This report describes the inactivation of lipid-containing viruses by several long-chain alcohols. A striking peak in antiviral activity was found for saturated alcohols having chain lengths from 10 to 14 carbons. Viruses having different membrane structure showed different susceptibilities to alcohols having different chain lengths and structural features. Decanol, dodecanol, and tetradecanol readily inactivated herpes simplex virus and the enveloped bacterial virus φ6. The lipid-containing virus PM2 was susceptible to decanol and dodecanol but comparatively unsusceptible to tetradecanol. The branched-chain alcohol phytol, a naturally occurring component of chlorophyll, was active against φ6 and herpes simplex virus but not against PM2. Polyoma virus and the bacteriophage φ23-1-a, which do not contain lipids, were not susceptible to inactivation by any of the alcohols tested. Experiments were also carried out to determine the effects of these compounds on cells. At 0.5 mM, decanol lysed human embryonic lung cells, erythrocytes, and the bacterial hosts for φ6 and PM2. Dodecanol, tetradecanol, and phytol at this concentration were less damaging to cells. At 0.05 mM, none of the alcohols caused observable cytopathic effects on human embryonic lung cells, although several of the alcohols at this concentration were active against herpes simplex virus. Our findings suggest that dodecanol, tetradecanol, and phytol may warrant further studies as potential antiviral agents, particularly for topical application to virus-infected areas of the skin.

Documentos Relacionados