In vitro trans-splicing in Saccharomyces cerevisiae.

AUTOR(ES)
RESUMO

The interactions established at the 5'-splice site during spliceosome assembly are likely to be important for both precise recognition of the upstream intron boundary and for positioning this site in the active center of the spliceosome. Definition of the RNA-RNA and the RNA-protein interactions at the 5' splice site would be facilitated by the use of a small substrate amenable to modification during chemical synthesis. We describe a trans-splicing reaction performed in Saccharomyces cerevisiae extracts in which the 5' splice site and the 3' splice site are on separate molecules. The RNA contributing the 5' splice site is only 20 nucleotides long and was synthesized chemically. The trans-splicing reaction is accurate and has the same sequence, ATP, and Mg2+ requirements as cis-splicing. We also report how deoxy substitutions around the 5'-splice site affect trans-splicing efficiency.

Documentos Relacionados