In vitro reconstitution of osmoregulated expression of proU of Escherichia coli.

AUTOR(ES)
RESUMO

Osmoregulated expression of proU has been reconstituted in a cell-free system. proU encodes an osmotically inducible, high-affinity transport system for the osmoprotectant glycine betaine in Escherichia coli. Previously, a proU-lacZ fusion gene had been cloned, resulting in plasmid pOS3. In vivo osmoregulation of this extrachromosomal proU-lacZ fusion gene at low copy number showed that the plasmid-encoded fusion contained all the necessary sequences in cis for correctly receiving osmoregulatory signals during induction by osmotic stress and repression by glycine betaine. Using a cell-free (S-30) extract, plasmid pOS3 was then used to program protein synthesis in vitro. The ionic compound potassium glutamate specifically stimulated proU-lacZ expression in a concentration-dependent manner. Potassium acetate also induced some proU expression, but other salts were ineffective, thereby ruling out ionic strength as the stimulatory signal. High concentrations of sucrose, trehalose, or glycine betaine did not induce proU expression in vitro either, eliminating osmolarity per se as the stimulus. Reconstitution in a cell-free system rules out osmoregulatory mechanisms that depend on turgor, trans-membrane signaling, or trans-acting regulators synthesized after osmotic upshock.

Documentos Relacionados