Improved Tendon Radioprotection by Combined Cross-linking and Free Radical Scavenging

AUTOR(ES)
FONTE

Springer-Verlag

RESUMO

Allograft safety is a great concern owing to the risk of disease transmission from nonsterile tissues. Radiation sterilization is not used routinely because of deleterious effects on the mechanical integrity and stability of allograft collagen. We previously reported several individual cross-linking or free radical scavenging treatments provided some radioprotective effects for tendons. We therefore asked whether a combination of treatments would provide an improved protective effect after radiation exposure regarding mechanical properties and enzyme resistance. To address this question we treated 90 rabbit Achilles tendons with a combination of cross-linking (1-ethyl-3-[3-dimethyl aminopropyl] carbodiimide [EDC]) and one of three scavenging regimens (mannitol, ascorbate, or riboflavin). Tendons then were exposed to one of three radiation conditions (gamma or electron beam irradiation at 50 kGy or unsterilized). Combination-treated tendons (10 per group) had increases in mechanical properties and higher resistance to collagenase digestion compared with EDC-only and untreated tendons. Irradiated tendons treated with EDC-mannitol, -ascorbate, and -riboflavin combinations had comparable strength to native tendon and had averages of 26%, 39%, and 37% greater, respectively, than those treated with EDC-only. Optimization of a cross-linking protocol and free radical scavenging cocktail is ongoing with the goal of ensuring sterile allografts through irradiation while maintaining their structure and mechanical properties.

Documentos Relacionados