Immunological and biophysical alteration of hepatitis B virus antigens by sodium hypochlorite disinfection.

AUTOR(ES)
RESUMO

Sodium hypochlorite (NaOCl) was examined as an effective disinfectant in hepatitis laboratories. Concentrations of NaOCl containing 5,600 ppm (5,600 microgram/ml) of available chlorine were found to be effective in destroying the antigenicity of hepatitis B surface antigen (HBsAg) in virion-rich plasma after an exposure time of 1 min or more. In the treatment of protein-deficient solutions containing HBsAg, smaller concentrations of available chlorine (less than 500 pm) are equally effective. Neither 17-to 25-nm HBsAg particles nor 45-nm virion particles could be detected by electron microscopy after treatment. chemical interaction of protein and NaOCl was confirmed by isoelectrofocusing of 125I-labeled HBsAg. More than 90% of the labeled material was found at pH 3.0 or lower, indicating complete antigen oxidation. Labeled HBsAg was reduced in density from 1.21 g/cm3 in CsCl to approximately 1.07 g/cm3 after treatment with NaOCl. Both hepatitis B core antigen and deoxyribonucleic acid polymerase activity were significantly reduced after interaction with hypochlorite solutions. These results show that NaOCl destroys hepatitis B antigenicity and virus structures and therefore may be utilized as a disinfectant for the virus.

Documentos Relacionados