Identification of two genes with prepilin-like leader sequences involved in type 4 fimbrial biogenesis in Pseudomonas aeruginosa.

AUTOR(ES)
RESUMO

Type 4 fimbriae are surface filaments produced by a range of bacterial pathogens for colonization of host epithelial surfaces. In Pseudomonas aeruginosa, they are involved in adhesion as well as in a form of surface translocation called twitching motility, and sensitivity to infection by fimbria-specific bacteriophage. Analysis of the 2.5-kb intergenic region between the previously defined pilR and pilV genes on P. aeruginosa genomic SpeI fragment E has identified three new genes, fimT, fimU, and dadA*. The predicted 18.5-kDa products of the fimT and fimU genes contain prepilin-like leader sequences, whereas the third gene, dadA*, encodes a protein similar to the D-amino acid dehydrogenase of Escherichia coli. Isogenic mutants constructed by allelic exchange demonstrated that the fimU gene was required for fimbrial biogenesis and twitching motility, whereas the fimT and dada* mutants retained wild-type phenotypes. However, overexpression of the fimT gene was found to be able to functionally replace the lack of a fimU gene product, suggesting a subtle role in fimbrial biogenesis. The identification of these proteins increases the similarity between type 4 fimbrial biogenesis and the supersystems involved in macromolecular traffic, such as extracellular protein secretion and DNA uptake, all of which now possess multiple protein species that possess prepilin-like leader sequences.

Documentos Relacionados