Identification of two distinct Bacillus subtilis citrate synthase genes.

AUTOR(ES)
RESUMO

Two distinct Bacillus subtilis genes (citA and citZ) were found to encode citrate synthase isozymes that catalyze the first step of the Krebs cycle. The citA gene was cloned by genetic complementation of an Escherichia coli citrate synthase mutant strain (W620) and was in a monocistronic transcriptional unit. A divergently transcribed gene, citR, could encode a protein with strong similarity to the bacterial LysR family of regulatory proteins. A null mutation in citA had little effect on citrate synthase enzyme activity or sporulation. The residual citrate synthase activity was purified from a citA null mutant strain, and the partial amino acid sequence for the purified protein (CitZ) was determined. The citZ gene was cloned from B. subtilis chromosomal DNA by using a PCR-generated probe synthesized with oligonucleotide primers derived from the partial amino acid sequence of purified CitZ. The citZ gene proved to be the first gene in a tricistronic cluster that also included citC (coding for isocitrate dehydrogenase) and citH (coding for malate dehydrogenase). A mutation in citZ caused a substantial loss of citrate synthase enzyme activity, glutamate auxotrophy, and a defect in sporulation.

Documentos Relacionados