Identification of AUF1 (heterogeneous nuclear ribonucleoprotein D) as a component of the alpha-globin mRNA stability complex.

AUTOR(ES)
RESUMO

mRNA turnover is an important regulatory component of gene expression and is significantly influenced by ribonucleoprotein (RNP) complexes which form on the mRNA. Studies of human alpha-globin mRNA stability have identified a specific RNP complex (alpha-complex) which forms on the 3' untranslated region (3'UTR) of the mRNA and appears to regulate the erythrocyte-specific accumulation of alpha-globin mRNA. One of the protein activities in this multiprotein complex is a poly(C)-binding activity which consists of two proteins, alphaCP1 and alphaCP2. Neither of these proteins, individually or as a pair, can bind the alpha-globin 3'UTR unless they are complexed with the remaining non-poly(C) binding proteins of the alpha-complex. With the yeast two-hybrid screen, a second alpha-complex protein was identified. This protein is a member of the previously identified A+U-rich (ARE) binding/degradation factor (AUF1) family of proteins, which are also known as the heterogeneous nuclear RNP (hnRNP) D proteins. We refer to these proteins as AUF1/hnRNP-D. Thus, a protein implicated in ARE-mediated mRNA decay is also an integral component of the mRNA stabilizing alpha-complex. The interaction of AUF1/hnRNP-D is more efficient with alphaCP1 relative to alphaCP2 both in vitro and in vivo, suggesting that the alpha-complex might be dynamic rather than a fixed complex. AUF1/hnRNP-D could, therefore, be a general mRNA turnover factor involved in both stabilization and decay of mRNA.

Documentos Relacionados