HYDROXYAPATITE - CARBON NANOTUBE COMPOSITES FOR DRUG DELIVERY APPLICATIONS

AUTOR(ES)
FONTE

Braz. J. Chem. Eng.

DATA DE PUBLICAÇÃO

30/09/2019

RESUMO

Abstract The aim of this study was the synthesis of composites containing hydroxyapatite (Hap) or silicon substituted hydroxyapatite (HapSi), carboxyl functionalized carbon nanotubes (fMWCNT) and gelatin (G) in different ratios. Ibuprofen (IBU) was chosen as a model drug for the formulation of extended-release dosage forms. The obtained composites were characterized using X-ray diffraction, laser diffraction particle size analyzer, Brunauer-Emmett-Teller surface area measurements, transmission electron microscopy and Fourier transformed infrared spectroscopy. IBU adsorption and desorption was monitored by UV-VIS spectroscopy. The obtained results revealed that composites containing three components exhibit higher adsorption efficiency (Hap-fMWCNT-20G - 82.7% and HapSi-fMWCNT-20G - 84.6%) and extended-release of IBU, due to the chemical bonds between the carboxyl groups of IBU and the functional groups on the composite surface. The adsorption capacity of Hap composites is important for dental or orthopedic implants, the anti-inflammatory substances being adsorbed on their surface; but the adsorption capacity also enhances new bone formation (osteosynthesis) around the implants. These composites are thus attractive materials to be used in bone tissue engineering and drug delivery systems.

Documentos Relacionados