Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide.

AUTOR(ES)
RESUMO

Approved type strains of Streptococcus sanguis, S. mitis, S. mutans, and S. salivarius were grown under aerobic and anaerobic conditions. The rate of hydrogen peroxide excretion, oxygen uptake, and acid production from glucose by washed-cell suspensions of these strains were studied, and the levels of enzymes in cell-free extracts which reduced oxygen, hydrogen peroxide, or hypothiocyanite (OSCN-) in the presence of NADH or NADPH were assayed. The effects of lactoperoxidase-thiocyanate-hydrogen peroxide on the rate of acid production and oxygen uptake by intact cells, the activity of glycolytic enzymes in cell-free extracts, and the levels of intracellular glycolytic intermediates were also studied. All strains consumed oxygen in the presence of glucose. S. sanguis, S. mitis, and anaerobically grown S. mutans excreted hydrogen peroxide. There was higher NADH oxidase and NADH peroxidase activity in aerobically grown cells than in anaerobically grown cells. NADPH oxidase activity was low in all species. Acid production, oxygen uptake, and, consequently, hydrogen peroxide excretion were inhibited in all the strains by lactoperoxidase-thiocyanate-hydrogen peroxide. S. sanguis and S. mitis had a higher capacity than S. mutans and S. salivarius to recover from this inhibition. Higher activity in the former strains of an NADH-OSCN oxidoreductase, which converted OSCN- into thiocyanate, explained this difference. The change in levels of intracellular glycolytic intermediates after inhibition of glycolysis by OSCN- and the actual activity of glycolytic enzymes in cell-free extracts in the presence of OSCN- indicated that the primary target of OSCN- in the glycolytic pathway was glyceraldehyde 3-phosphate dehydrogenase.

Documentos Relacionados