Hybrid Escherichia coli sensory transducers with altered stimulus detection and signaling properties.

AUTOR(ES)
RESUMO

The tar and tap loci of Escherichia coli encode methyl-accepting inner membrane proteins that mediate chemotactic responses to aspartate and maltose or to dipeptides. These genes lie adjacent to each other in the same orientation on the chromosome and have extensive sequence homology throughout the C-terminal portions of their coding regions. Many spontaneous deletions in the tar-tap region appear to be generated by recombination between these regions of homology, leading to gene fusions that produce hybrid transducer molecules in which the N terminus of Tar is joined to the C terminus of Tap. The properties of two such hybrids are described in this report. Although Tar and Tap molecules have homologous domain structures, these Tar-Tap hybrids exhibited defects in stimulus detection and flagellar signaling. Both hybrid transducers retained Tar receptor specificity, but had reduced detection sensitivity. This defect was correlated with the presence of the C-terminal methyl-accepting segment of Tap, which may have more methylation sites than its Tar counterpart, leading to elevated steady-state methylation levels in the hybrid molecules. One of the hybrids, which carried a more extensive segment from Tap, appeared to generate constitutive signals that locked the flagellar motors in a counterclockwise rotational mode. Changes in the methylation state of this transducer were ineffective in cancelling this aberrant signal. These findings implicate the conserved C-terminal domain of bacterial transducers in the generation or regulation of flagellar signals.

Documentos Relacionados