Human papillomavirus type 16 virus-like particles expressed in attenuated Salmonella typhimurium elicit mucosal and systemic neutralizing antibodies in mice.

AUTOR(ES)
RESUMO

Attenuated strains of Salmonella are attractive live vaccine candidates for eliciting mucosal as well as systemic immune responses. The ability to induce immune responses in the reproductive tract may be critical for the effectiveness of a prophylactic vaccine against genital human papillomaviruses (HPV), which are important etiologic agents in the development of cervical cancer. To examine the potential of a live Salmonella-based vaccine to prevent genital HPV infection, the L1 major capsid protein from HPV type 16 (HPV16) was constitutively expressed in the PhoPc strain of Salmonella typhimurium. As demonstrated by electron microscopy, the L1 protein expressed in these bacteria assembled into virus-like particles (VLPs) that resemble authentic papillomavirus virions. This is the first demonstration that papillomavirus VLPs can self-assemble in prokaryotes. BALB/c mice were immunized with the HPV16 L1 recombinant PhoPc strain by the oral and nasal routes. Despite a low stability of the L1-expressing plasmid in vivo, a double nasal immunization was effective in inducing L1-specific serum antibodies that recognized mainly native, but not disassembled, VLPs. These antibodies effectively neutralized HPV16 pseudotyped virions in an in vitro infectivity assay. Conformationally dependent anti-VLP immunoglobulin A (IgA) and IgG were also detected in oral and vaginal secretions, indicating that potentially protective antibody responses were elicited at mucosal sites. Recombinant attenuated Salmonella expressing HPV capsids may represent a promising vaccine candidate against genital HPV infection.

Documentos Relacionados