Human immunodeficiency virus type 1 Nef-induced down-modulation of CD4 is due to rapid internalization and degradation of surface CD4.

AUTOR(ES)
RESUMO

Human immunodeficiency virus type 1 (HIV-1) Nef is a myristylated protein with a relative molecular mass of 27 kDa, is localized to the cytoplasmic surfaces of cellular membranes, and has been reported to down-modulate CD4 in human T cells. To understand the mechanism of HIV-1 Nef-mediated down-modulation of cell surface CD4, we expressed Nef protein in human T-cell line VB. Expression of HIV-1 Nef protein down-modulated surface CD4 molecules. In pulse-chase experiments, CD4 molecules in Nef-expressing cells were synthesized at normal levels. However, the bulk of newly synthesized CD4 protein was degraded with a half-life of approximately 6 h, compared with the 24-h half-life in control cells. This Nef-induced acceleration of CD4 turnover was inhibited by lysosomotropic agents NH4Cl and chloroquine as well as by the protease inhibitor leupeptin. Surface CD4 biotinylation experiments demonstrated that CD4 molecules in Nef-expressing T cells are transported to the plasma membrane with normal kinetics but are then rapidly internalized. Therefore, HIV-1 Nef-induced down-modulation of CD4 is due to rapid internalization of surface CD4 and subsequent degradation by an acid-dependent process, potentially lysosomal. Additionally, in a Nef-expressing cell, we find accelerated dissociation of the T-cell tyrosine kinase p56lck and CD4 but only after the complex reaches the plasma membrane. This implies that HIV-1 Nef protein might play a role in triggering a series of T-cell activation-like events, which contribute to p56lck dissociation and internalization of surface CD4 molecules.

Documentos Relacionados