Heavy-Metal Stress and Developmental Patterns of Arbuscular Mycorrhizal Fungi

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The rate of global deposition of Cd, Pb, and Zn has decreased over the past few decades, but heavy metals already in the soil may be mobilized by local and global changes in soil conditions and exert toxic effects on soil microorganisms. We examined in vitro effects of Cd, Pb, and Zn on critical life stages in metal-sensitive ecotypes of arbuscular mycorrhizal (AM) fungi, including spore germination, presymbiotic hyphal extension, presymbiotic sporulation, symbiotic extraradical mycelium expansion, and symbiotic sporulation. Despite long-term culturing under the same low-metal conditions, two species, Glomus etunicatum and Glomus intraradices, had different levels of sensitivity to metal stress. G. etunicatum was more sensitive to all three metals than was G. intraradices. A unique response of increased presymbiotic hyphal extension occurred in G. intraradices exposed to Cd and Pb. Presymbiotic hyphae of G. intraradices formed presymbiotic spores, whose initiation was more affected by heavy metals than was presymbiotic hyphal extension. In G. intraradices grown in compartmentalized habitats with only a portion of the extraradical mycelium exposed to metal stress, inhibitory effects of elevated metal concentrations on symbiotic mycelial expansion and symbiotic sporulation were limited to the metal-enriched compartment. Symbiotic sporulation was more sensitive to metal exposure than symbiotic mycelium expansion. Patterns exhibited by G. intraradices spore germination, presymbiotic hyphal extension, symbiotic extraradical mycelium expansion, and sporulation under elevated metal concentrations suggest that AM fungi may be able to survive in heavy metal-contaminated environments by using a metal avoidance strategy.

Documentos Relacionados