Heat inactivation of Bacillus subtilis spores lacking small, acid-soluble spore proteins is accompanied by generation of abasic sites in spore DNA.

AUTOR(ES)
RESUMO

Previous work has shown that lethal heat treatment of Bacillus subtilis spores lacking the major DNA-binding proteins SASP-alpha and -beta (alpha-beta- spores) causes significant DNA damage, including many single-strand breaks. In this work we have used a reagent specific for aldehydes present in abasic sites in DNA to show that DNA from wild-type spores killed by heat treatment to levels of < 0.05% survival had at most two aldehydes (i.e., abasic sites) per 10(4) nucleotides, while DNA from alpha(-)beta- spores killed to similar levels had 7 to 20 times as many abasic sites per 10(4) nucleotides. These data were generally consistent with the level of single-strand breaks in DNA from these heated spores and strongly suggest that a major mechanism responsible for the heat killing of alpha(-)beta- (but not wild-type) spores is DNA depurination followed by strand breakage at the resultant abasic site. In contrast, hydrogen peroxide killing of alpha(-)beta - spores was not accompanied by generation of a high level of DNA aldehydes.

Documentos Relacionados