H+/ATP stoichiometry of cowpea Rhizobium sp. strain 32H1 cells grown under nitrogen-fixing and nitrogen-nonfixing conditions.

AUTOR(ES)
RESUMO

The obligate aerobe Cowpea Rhizobium sp. strain 32H1 in axenic culture is able to fix N2 when grown under 0.2% O2 but not when grown under 21% O2. It was, therefore, of interest to investigate ATP synthesis in these cells grown under the two conditions. When respiring in buffers having pHs ranging from 6 to 8.5, cells grown under either O2 tension maintained an intracellular pH more alkaline than the exterior. The transmembrane chemical gradient of H+ (delta pH) was essentially the same under both conditions of growth, decreasing from ca. 90 mV at medium pH 6 to ca. 30 mV at pH 8.5. However, the transmembrane electrical gradient (delta psi) was significantly higher in cells grown under 21% O2 (150 to 166 mV) than in cells grown under 0.2% O2, the latter being 16 mV at pH 6 and increasing to 88 mV at pH 8.5. Therefore, the proton motive force of 21% O2-grown cells ranged from 237 mV at external pH 6 to 185 mV at pH 8.5, compared with a proton motive force of 114 to 121 mV in the 0.2% O2-grown cells. The cells grown in 0.2% O2 had the same proton motive force whether tested at 21 or at 0.2% O2. The phosphorylation potential, calculated from the intracellular ATP, ADP, and Pi concentrations, was 424 mV in the 21% O2-grown cells and 436 mV in the 0.2% O2-grown cells. Thus, the 21% O2-grown cells translocated 1.8 to 2.3 H+/ATP synthesized by the H+-ATPase, whereas the H+/ATP ratio for 0.2% O2-grown cells was 3.7 to 3.8.

Documentos Relacionados