Geostatistical simulations with heterotopic hard and soft data without modeling the linear model of coregionalization

AUTOR(ES)
FONTE

REM, Int. Eng. J.

DATA DE PUBLICAÇÃO

2021-06

RESUMO

Abstract Most mining decisions are based on models estimated/simulated given the information obtained from samples. During the exploration stage, samples are commonly taken using diamond drill holes which are accurate and precise. These samples are considered hard data. In the production stage, new samples are added. These last are cheaper and more abundant than the drill hole samples, but imprecise and are here named as soft data. Usually hard and soft data are not sampled at the same locations, they form a heterotopic dataset. This article proposes a framework for geostatistical simulation with completely heterotopic soft data. The simulation proceeds in two steps. First, the variable of interest at the locations where soft data are available is simulated. The local conditional distributions built at these locations consider both hard and soft data and are obtained using simple cokriging with the intrinsic coregionalization model. Second, the variable of interest in the entire simulation grid using the original and previously simulated values at soft data locations is simulated. The results show that the information from soft data improved both the accuracy and precision of the simulated models. The proposed framework is illustrated by a case study with data obtained from an underground copper mine.

Documentos Relacionados