GEOMECHANICAL EFFECTS ON PETROLEUM RESERVOIR SIMULATIONS / EFEITOS GEOMECÂNICOS NA SIMULAÇÃO DE RESERVATÓRIOS DE PETRÓLEO

AUTOR(ES)
DATA DE PUBLICAÇÃO

2002

RESUMO

Numerical simulators for reservoir flow analysis are important tools for the optimization of oil field development. These simulators model the multiphase flow through compressible porous medium taking into account the phase equilibrium equations, flow laws and the rock volumetric change associated to the pore pressure change during production. Some simulators have been associated with stress analysis modules in order to use the pore pressure field obtained by the flow simulator and update the stress field within the reservoir. This dissertation describes the use of a conventional reservoir simulator based on finite differences that models multiphase flow in porous media, with and without a geomechanical module, and the use of a fully-coupled simulator that solves both the flow and stress equations in a single finite element code. This dissertation compares the two geomechanical modules, the approximated and the precise, offered by commercial simulators, and analyses the situations in which the rigorous form should be considered, or not. The aim of this dissertation is to investigate the influence of in situ stresses in petroleum reservoirs based on the comparison of the pore pressure fields obtained from the modeling of the same system with both geomechanical simulators. The coupling and formulation used in each model are presented. The geomechanical models of both simulators are described. A comparison of the simulators is made using a bidimensional model.

ASSUNTO(S)

reservoir simulator analise acoplada simulador de reservatorio coupled analysis geomecanica geomechanics

Documentos Relacionados