Genotypic Identification of Erythromycin-Resistant Campylobacter Isolates as Helicobacter Species and Analysis of Resistance Mechanism

AUTOR(ES)
FONTE

American Society for Microbiology

RESUMO

The correct identification of Campylobacter species remains cumbersome, especially when conventional biochemical tests and antimicrobial susceptibility patterns are used for a phenotypical identification. Correct identification is important for epidemiological purposes and for studying changes in antimicrobial resistance patterns. Six erythromycin-resistant campylobacter strains were investigated by 16S ribosomal DNA (rDNA) sequencing, 23S rDNA sequencing, and restriction fragment length polymorphism analysis of a putative heme-copper oxidase domain described as being specific for thermophilic Campylobacter species. Three erythromycin-resistant isolates from feces of human immunodeficiency virus (HIV)-seropositive patients with diarrhea and one blood isolate of from HIV-seropositive patient with cellulitis were identified by 16S rDNA analysis as Helicobacter cinaedi, whereas 23S rDNA sequencing suggested Wolinella succinogenes. The 16S rDNA sequence data of fecal isolates of two patients with travelers diarrhea revealed Helicobacter pullorum and were also in contrast with 23S rDNA sequencing. Of 4 H. cinaedi isolates, 1 contained the putative heme-copper oxidase gene thought to be specific for thermophilic species. The six erythromycin-resistant Helicobacter species had a similar point mutation A2143G in 23S rDNA resembling the macrolides resistance in Helicobacter pylori. We conclude that 16S rDNA sequencing should be preferred to 23S rDNA analysis and that macrolide-resistant campylobacter strains should be investigated by this approach for a correct identification.

Documentos Relacionados