Genetics of the white-opaque transition in Candida albicans: demonstration of switching recessivity and mapping of switching genes.

AUTOR(ES)
RESUMO

Spheroplast fusion has been used to analyze the genetics of the reversible phenotypic transition, white-opaque, in Candida albicans WO-1. This transition involves changes in cell shape, permeability, and colony morphology. Fusion of switching with nonswitching cells gave nonswitching fusants, suggesting that the white-opaque phenotype is recessive. Chromosome loss induced by heat shock gave segregants of the fusants which were able to undergo the transition, indicating that the repressor function is genetically defined and probably limited to one or two chromosomes. Chromosomes R, 1, 3, 4, and 7 were eliminated as unique sites for the repressor, leaving 2, 5, and 6 as possible locations. When a ura3 (chromosome 3) nonswitching strain was fused with a switching strain, all ura3 segregants induced by heat shock were incapable of the phenotypic transition. Therefore, some or all of the genes (called SWI genes) essential for the transition are located on chromosome 3. UV irradiation-induced recombination did give rise to Ura- switching progeny, showing that the failure to switch was not due to a side effect of the pyrimidine requirement. The failure to isolate normally switching ura3 progeny generated by UV irradiation suggests a close linkage between the two genes.

Documentos Relacionados